Glass articles are increasingly used in vehicles, photovoltaic panels, and other electronic devices. For example, in vehicles, such glass articles are typically used as rear-view mirrors, window panels, and windshields. In case of solar products, different types of glass or glass-like coatings are usually applied on exposed surface of the photovoltaic panels.
Such glass articles are susceptible to accumulation of various types of dirt (or debris) that are usually present in the ambient atmosphere. The accumulation may further cause occlusion of certain regions on the glass articles and thereby, in certain critical scenarios, such occlusion may interrupt different support systems and/or users that rely on the glass articles.
For example, certain regions on a windshield of a vehicle may include dirt spots that may occlude a view in line-of-sight (LOS) of a human driver during a journey. Similarly, accumulation of dirt on lenses of a camera mounted on a vehicle may cause errors in image acquisition. Thus, decisions made on the basis of such erroneous images may not be desirable. As another example, dirt accumulations on photovoltaic panels over a period of time may cause a decrease in a power capture efficiency of the solar panels, which may translate into lower power output for homes, offices, transport systems, or facilities that may depend on power from such solar panels.
Photo by Manskee Nascimento
Conventionally, different automated solutions for cleaning glass articles in a vehicle or a photovoltaic assembly usually rely on either a physical contact of a robotic brush with the glass articles or usage of sophisticated chemical solutions (for example, a soap solution) that may be sprayed over the glass articles. Although such automated solutions may clean glass articles, preparations for cleaning such glass articles may consume a significant time and the cleaning and drying period may add to overall unproductive time. Additionally, usage of chemical solutions may be unsuitable for glass articles installed in electronics devices (for example, cameras, dashboards, and the like) as such components may turn defective with application of such chemical solutions.
Photo from autodetail
Tesla has submitted a patent called "PULSED LASER CLEANING OF DEBRIS ACCUMULATED ON GLASS ARTICLES IN VEHICLES AND PHOTOVOLTAIC ASSEMBLIES" (US20190351873). The application was submitted on May 10, 2019 and published on November 21, 2019.
The published application document states that “A cleaning system for a vehicle includes a beam optics assembly that emits a laser beam to irradiate a region on a glass article of the vehicle, debris detection circuitry that detects debris accumulated over the region, and control circuitry. The control circuitry calibrates a set of parameters associated with the laser beam emitted from the beam optics assembly based on detection of the debris accumulated over the region on the glass article, controls an exposure level of the laser beam on the debris accumulated based on calibration of the set of parameters associated with the laser beam, along the exposure level is controlled based on pulsing the laser beam at a calibrated rate that limits penetration of the laser beam to a depth that is less than a thickness of the glass article, and removes the debris accumulated over the region on the glass article using the laser beam."
Images from Tesla patent
This means that Tesla is going to go to a whole new level of systems for cleaning the glass surfaces of its products. Throughout its existence, the company is actively working to improve them. Tesla's goal is to ensure that company customers enjoy using the company's products. The introduction of revolutionary systems in Tesla's products has become a reality for its customers, while customers of other companies may have to wait a few more years before they can use something like that.
Tesla truly cares about its customers.
Photo for the article: Reuters