SpaceX’s Dragon 21st NASA Commercial Resupply Services (CRS-21) mission to the International Space Station (ISS) concluded tonight. After 36-days at the orbiting laboratory, Dragon initiated its return voyage on Tuesday, January 12. It undocked from the station’s Harmony module as NASA Astronaut Victor Glover monitored the spacecraft’s autonomous undocking operation. “Godspeed, Cargo Dragon and to the recovery team!” Glover said during the Live broadcast. Dragon fired its thrusters to move away from the Space Station.
The @SpaceX #CargoDragon completed its 36-day stay at the station today after undocking at 9:05am ET. It will splashdown in the Gulf of Mexico late Wednesday. More... https://t.co/I2Ml2IPSuM pic.twitter.com/LvvcLTIMrp
— International Space Station (@Space_Station) January 12, 2021
By Wednesday, January 13, SpaceX’s Dragon spacecraft performed a deorbit burn and reentered Earth’s atmosphere at night. –“Dragon's trunk has separated, de-orbit burn complete, and nosecone closed. Splashdown in ~40 minutes,” the company Tweeted out as it happened. The agency did not broadcast the spacecraft’s return voyage. Forty minutes later, Dragon deployed its parachutes and performed a controlled splash-down west of Tampa off the Florida coast at 8:26 p.m. EST carrying important scientific cargo that will be returned to the hands of researchers. –“Splashdown of Dragon confirmed, completing SpaceX’s 21st Space Station resupply mission and the first return of a cargo resupply spacecraft off the coast of Florida,” SpaceX announced via Twitter.
Splashdown of Dragon confirmed, completing SpaceX’s 21st @Space_Station resupply mission and the first return of a cargo resupply spacecraft off the coast of Florida
— SpaceX (@SpaceX) January 14, 2021
The spacecraft carried 4,400 pounds of cargo, including live mice, and the results of experiments. “The upgraded cargo Dragon capsule used for this mission contains double the powered locker availability of previous capsules, allowing for a significant increase in the research that can be delivered back to scientists. Some scientists will get their research returned quickly, four to nine hours after splashdown,” the agency shared in a press release. Dragon will be recovered from the ocean by SpaceX and NASA recovery teams sailing in the Gulf of Mexico. The agency shared it aims to return the scientific cargo to researchers in 4 to 9 hours to minimize the loss of microgravity effects on the science experiment results. Previously, returning scientific cargo took 48 hours; Splashing down near Florida's coast enables quick transportation the Kennedy Space Center’s Space Station Processing Facility. Tonight, SpaceX and NASA will use ships and helicopters to deliver the important cargo faster. Some science experiments and cargo that returned aboard SpaceX’s CRS-21 Dragon mission are listed below. List Source: NASA
The science will get a lift via helicopter from a @SpaceX boat to @NASAKennedy. The newly grounded science includes:
— ISS Research (@ISS_Research) January 14, 2021
🫀The Cardinal Heart experiment cell study
👁️Rodents as a part of the Rodent Research-23 vision study
🩸Blood samples
🧫The STaARS BioScience-4 experiment
Science Cargo Dragon returned from the Space Station List Source: NASA
Microgravity causes changes in the workload and shape of the human heart, and it is still unknown whether these changes could become permanent if a person lived more than a year in space. Cardinal Heart studies how changes in gravity affect cardiovascular cells at the cellular and tissue level using 3D-engineered heart tissues, a type of tissue chip. Results could provide new understanding of heart problems on Earth, help identify new treatments, and support development of screening measures to predict cardiovascular risk prior to spaceflight.
This investigation from JAXA (Japan Aerospace Exploration Agency) demonstrates the growth of 3D organ buds from human stem cells to analyze changes in gene expression. Cell cultures on Earth need supportive materials or forces to achieve 3D growth, but in microgravity, cell cultures can expand into three dimensions without those devices. Results from this investigation could demonstrate advantages of using microgravity for cutting-edge developments in regenerative medicine and may contribute to the establishment of technologies needed to create artificial organs.
The sextant used in the Sextant Navigation experiment will be returning to Earth. Sextants have a small telescope-like optical sight to take precise angle measurements between pairs of stars from land or sea, enabling navigation without computer assistance. Sailors have navigated via sextants for centuries, and NASA’s Gemini missions conducted the first sextant sightings from a spacecraft. This investigation tested specific techniques for using a sextant for emergency navigation on spacecraft such as NASA’s Orion, which will carry humans on deep-space missions.
This experiment studies the function of arteries, veins, and lymphatic structures in the eye and changes in the retina of mice before and after spaceflight. The aim is to clarify whether these changes impair visual function. At least 40 percent of astronauts experience vision impairment known as Spaceflight-Associated Neuro-ocular Syndrome (SANS) on long-duration spaceflights, which could adversely affect mission success.
This technology demonstration tested a method to remove carbon dioxide (CO2) from air aboard the International Space Station, using actively heated and cooled amine beds. Controlling CO2 levels on the station reduces the likelihood of crew members experiencing symptoms of CO2 buildup, which include fatigue, headache, breathing difficulties, strained eyes, and itchy skin.
Bacterial Adhesion and Corrosion
Bacteria and other microorganisms have been shown to grow as biofilm communities in microgravity. This experiment identifies the bacterial genes used during biofilm growth, examines whether these biofilms can corrode stainless steel, and evaluates the effectiveness of a silver-based disinfectant. This investigation could provide insight into better ways to control and remove resistant biofilms, contributing to the success of future long-duration spaceflights.
Fiber Optic Production, which includes the return of experimental optical fibers created in microgravity using a blend of zirconium, barium, lanthanum, sodium, and aluminum. The return of the fibers, called ZBLAN in reference to the chemical formula, will help verify experimental studies that suggest fibers created in space should exhibit far superior qualities to those produced on Earth.
Image Source: SpaceX